Home Authors Posts by fintan

fintan

2 POSTS 0 COMMENTS

This is a guest post from the BiotechBlog Intern,  Fintan Burke. Fintan is a student at the School of Biotechnology at Dublin City University. Do you have a response to Fintan’s post? Respond in the comments section below.

One of the most overlooked but consistent problems facing many governments is waste management. Despite healthy recycling attitudes in both the US and UK, an EPA report showed US total waste production in 2010 was still around 250 million tons, while there are concerns that the UK will run out of landfill sites by 2018.

For many years, the only viable alternative to landfills was incineration. Despite its efficiency over landfill sites (incineration can reduce the waste mass by around 90%), concerns over small energy generation efficiency (estimated at 20-25%) as well as public protest over environmental impact mean incineration can never be a permanent solution.

As public and private sectors are beginning to shift their attention to cleaner, more efficient alternatives to waste disposal, one of the leading candidates is gasification.

Gasification has been with us in various forms since the 1840s. The process involves extracting combustible gases by subjecting dehydrated carbonaceous materials to intense temperatures and reacting the resulting ‘char’ with oxygen and/or steam. Originally coal and wood were used in the process and so bore little difference to incineration. Since the 1970s, however, focus has shifted from using these conventional inputs to biomass.

From this change in focus, several companies have been set up to offer biomass gasification as an effective renewable resource. One such company, Thermoselect, claims that for every 100kg of waste processed, 890kg of “pure synthesis gas” is created for energy generation. Another company, ZeroPoint Clean Tech Inc., is keen to demonstrate gasification’s use in generating renewable gas, heat, water and electricity.

This development has been embraced by both the US and UK governments, welcoming the opportunity to reduce their carbon footprint as well as municipal waste. In April 2011, the US Air Force Special Operations Command invested in a new plasma-based transportable gasification system, with the aim of reducing its waste output by 4,200 tons a year in air bases across the country. Later that year, Britain approved the first advanced gasification plant in the country, with the potential to generate 49 megawatts of renewable energy (enough to power around 8,000-16,000 US households). Some have even speculated that this new technology could be used to spark a boom in hydrogen cell powered vehicles in the future.

Not everyone has embraced the new technique, however. The proposal for a biomass gasification plant in DeKalb County, Georgia was met with protests from locals, fearing carcinogenic emissions. Furthermore, a 2009 report by The Blue Ridge Environmental Defence League warned that gasification shares many similarities with incineration, including the formation of pollutants and greenhouse gasses.

Despite these arguments, the gasification of biomass has several benefits. The high temperatures make them an ideal means of processing bio-hazardous waste from hospitals and the plants themselves occupy very little physical space. As with any emerging technology, however, uptake is cautiously slow. Many of the new plants are in trial stages and it is uncertain whether gasification will have any long-term environmental effects. Should the existent plants prove to be successful, there is no reason to doubt that gasification will become a realistic solution for environmentally sound energy generation.

 

About the author:

Fintan Burke is a student at the School of Biotechnology at Dublin City University. His main fields of interest include biomedical therapies and recombinant organisms.  Fintan may be contacted at fintan.burke2@mail.dcu.ie .

This is a guest post from the BiotechBlog Intern,  Fintan Burke. Fintan is a student at the School of Biotechnology at Dublin City University. Do you have a response to Fintan’s post? Respond in the comments section below.

According to a BDO industry report, a smallUS biotech company in 2010 enjoyed average revenues of around $42m while larger firms reported average revenue of around $124m. Additionally the European biotech sector also enjoyed a sizeable success with revenues totalling €13bn the same year. Global biotechnology revenues are estimated to grow to €103bn by 2013, bolstered by the pharmaceutical market which is expected to become a trillion-dollar industry by 2014.

These high revenues can attract more than just investors; smaller companies are seeing the benefits of asserting breach of their own patents in order to attain lawsuit settlements or licensing fees. Though more well-known in the technology sector, these ‘Patent Trolls’ have started to attract attention in biotech circles.

A standout case was that of Classen Immunotherapies Inc. which brought four biotechnology companies and a medical group to court for infringing on their patent of an immunisation schedule that could curb the risk of developing chronic diseases. Although the lawsuit was first thrown out by the district court as only a mental abstract, on appeal the federal court ruled in Classen’s favour citing that Classen has a “statutory process” that allows for patent protection.

This has set a troubling precedent in biotech law; since the Classen patents were somewhat broad, there could soon be a flood of similar companies trying to claim patent infringement based in immunisation or dosage schedules.

Indeed, there is proof of some small firms already trying to build a portfolio of biotech patents. These ’non-practicing entities’ deliberately gather patents – not in order to develop products – but rather extort other companies for settlements or licensing fees. There are already specialized law firms which help companies obtain and enforce biotech-specific patents. Such companies have been known to damage stock prices, delay production and eat into revenues – all of which is completely legal.

Many identify these frivolous litigations to lie not in the vagueness of the patents, but rather in unspecific patent legislation. In Ronald I. Eisenstein’s 2006 column in The Scientist, he notes that “One size does not fit all in terms of approaching patents.” Any legislation passed to curtail the practice of ‘Trolling’ in the technology sector may inadvertently harm smaller biotech companies and universities that rely on larger companies in the FDA approval process.

In his 2008 book Intellectual Property and Biotechnology: Biological Inventions, Dr. Matthew Rimmer offers some solutions to this growing problem. “Novelty and utility are the criteria used to judge whether something is inventive or not” he writes. “It is really those doctrinal concepts that need to be tightened.”

In a 2011 Forbes article Colleen Chien also offered some advice to defend against the trolls. She notes that many trolls will use contingent fee based lawyers to manage costs. Firms that pay via successful disposal of a suit or minimise settlement costs cn likewise minimise legal fees and increase the lawyer’s incentive to defend them. Furthermore, larger firms could be better off outsourcing their defence to specialist lawyers, rather than solely relying on their own legal team.

Patent trolls remain a very real problem in the world of technology. In the most infamous case, Research In Motion (producers of the Blackberry) paid a $600m settlement to NTP Inc for infringing their wireless email patents. Fortunately steps have been taken at a federal level. The passing of the Leahy-Smith American Patents Act in September 2011 has allowed any firm threatened with infringement to petition for a patent review within 4 months of being sued. Nonetheless the biotechnology sector must begin to reassess its patent rights and monitor such changes in legislation if it is to further grow as an industry.

About the author:

Fintan Burke is a student at the School of Biotechnology at Dublin City University. His main fields of interest include biomedical therapies and recombinant organisms.  Fintan may be contacted at fintan.burke2@mail.dcu.ie .