Archive for 2015

Reverse Stock Splits in the Biotechnology Industry: An Effectuation Approach

Using an effectuation theory lens, we study reverse stock splits in the biotech industry where significant uncertainty makes specific scenarios of success difficult to predict. We conjecture and find that, in contrast to other environments where there is less uncertainty, reverse stock splits in the biotech industry are followed by positive abnormal returns over the subsequent 1- to 12-months. Also consistent with our effectuation-based predictions, we find that these returns are positively related to the reverse split ratio, size, cash holding, and long-term debt, and negatively related to the market-to-book ratio and firm age. We also find that liquidity increases after a reverse stock split. These results suggest that the concept of effectuation theory is better suited to analyzing reverse stock splits in the biotech industry. 


Industrial Application of Biological Self-healing Concrete: Challenges and Economical Feasibility

Self-healing concrete has been scrutinized by several researchers and some industrial concrete producers in relation to the remediation of the occurrence of micro-cracks. Such cracks are a quite well known problem that can lead to corrosion of the steel reinforcement and thus to the possible failure of the entire concrete structure. The need to repair these cracks as soon as possible leads to maintenance costs which can be of the order of €130 (direct costs) per m3 of concrete. Recent scientific studies indicate that a Microbial Induced Carbonate Precipitation (MICP), using microbial spores as active agent, can be an alternative for the actual repair methods. However, the production of bacterial spores is yet imposing considerable costs. According to some concrete producers they would be willing to pay about €15 to €20 per m3 of concrete for a bio-based self-healing product. However, the actual cost of spores production and encapsulation represent a total cost which is orders of magnitude higher. This article analyzes the costs for the biological self-healing in concrete and evaluates the industrial challenges it faces. There is an urgent need to develop the production of a bio-additive at much lower costs to make the biological self-healing industrial applicable. Axenic production and a possible non-axenic process to obtain ureolytic spores were analyzed and the costs calculations are presented in this paper.


Biotechblog