Archive for 2013

Bowman v. Monsanto: Revisiting the Exhaustion Doctrine and its Application to Biotechnology and Digital Technologies

On February 19, 2013, the U.S. Supreme Court heard oral argument in Bowman v. Monsanto – the first case to directly present the question of how the Exhaustion Doctrine should apply to patents relating to biotechnology and digital technology inventions.  The Petitioner, Vernon Hugh Bowman, asserts that the Exhaustion Doctrine should be extended to advanced agricultural technologies where the technology itself is contained in genetically modified seeds that may be reproduced through successive generations of seeds without limitation, and that companies like Monsanto can instead rely on remedies found in contract law to protect its commercial interests.  The Respondent, Monsanto Corporation, supported by the U.S. Government, (not surprisingly) disagrees, contending that an extension of the Exhaustion Doctrine of this magnitude would undercut effective patent protection for inventions that may reproduce perfectly over generations, undermining R&D in innovative technologies.  
During the Bowman v. Monsanto oral argument on February 19th, the Justices focused on the broad scope of the exception sought by the Petitioner to patent rights for GM seed as an extension of the Exhaustion Doctrine to biotechnology and digital technology inventions, and did not appear persuaded either that the only reasonable use of the soybeans by Bowman was to plant them or that right holders would find effective modes of protection through contract law.  The Justices noted that this was the first case to present the intersection of the Exhaustion Doctrine and effective protection for inventions that may be reproduced across generations – that intersection to be the issue of greatest interest to the Court in  Bowman v. Monsanto, where the Court may be unlikely to create a sweeping exception to patent rights for biotechnology or digital technology inventions that has not been contemplated by the Congress.

Full details at the Journal of Commercial Biotechnology


Developing Cell Therapies: Enabling cost prediction by value systems modeling to manage developmental risk.

This work quantifies the highest risk activities and interdependencies in cell therapy new product development (NPD).  A simulation model based upon an activates based and information driven  approach of the Design Structure Matrix (DSM), using Latin Hypercube sampling methods with discrete event simulation evaluated the interdependencies between critical development tasks.  Input data was collected from quarterly financial reports of cell therapy developers and developmental milestones as reported in company press releases and publications.  .

Successfully planning and managing development processes is problematic in an emerging industry lacking precedents and standardised technology platforms.   Methods of understanding and reducing developmental uncertainty and risk are needed to aid resourcing decisions.  A particular requirement is to understand the impact of process and clinical development, in this highly regulated sector.

Results from the model quantify the probability and impact of process iterations and failures that impact cost and duration of cell therapy NPD.  High impact areas quantified are the interdependence of Phase 1 clinical trials and investment, the scaling of the manufacturing process from Phase 1 to Phase 2 and Phase 2 to Phase 3.  The model also allows for the calculation of the probability of NPD success for given resource levels, time constraints and market conditions.  An application comparing alternative regulatory approaches indicates that the current favoured strategy of targeting an orphan indication gives little benefit for the tested clinic al indication because of reduced clinical trial recruitment rate.  While specifically developed for cell therapy NPD this modelling approach has potential application across the wider biotechnology industry.

Full details at the Journal of Commercial Biotechnology


Biotechblog